If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1.25t^2+10t-30=0
a = 1.25; b = 10; c = -30;
Δ = b2-4ac
Δ = 102-4·1.25·(-30)
Δ = 250
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{250}=\sqrt{25*10}=\sqrt{25}*\sqrt{10}=5\sqrt{10}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-5\sqrt{10}}{2*1.25}=\frac{-10-5\sqrt{10}}{2.5} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+5\sqrt{10}}{2*1.25}=\frac{-10+5\sqrt{10}}{2.5} $
| x²-42*x+160=0 | | x²-42x+160=0 | | 23=4x^2-13 | | 12x(x)=132 | | 6y-3y=3y+5 | | (y)/(2)5(y+3)=(3)/(2)(4-3y) | | 3(4x-10)=2(15x-6) | | 10x+15=33+12x-58 | | 4t-6=24 | | X=2(5x-7) | | 2.5x=3x+2.5 | | -19-27x=17 | | (11)-19-2/x=17 | | 13(x-11)=52 | | 12x-18-4x-2= | | 4x-80=x | | 5/9x-18=12 | | g-3=8 | | 15x-7x=1 | | 9+9x42=356 | | 2+5(x+3)+2x=3-4(2x+5) | | x2+12x-960=0 | | 3x+2=-2x-22 | | Y=-x2-8x+32 | | 30+40=200/t | | 10228=2557×s | | 2(x+4)=4x/2+8 | | s×2557=10228 | | (1/0)x=1/0 | | (1/0)x=100 | | 67-2(3+13)=29-3(2x-4) | | (4x-8)(5x-2)=0 |